
 1

Inverter For Dual-Rail 2LAL
Technical report ZF014, v1, May 7, 2025

Erik P. DeBenedictis

Zettaflops LLC, Albuquerque, NM 87112

erikdebenedictis@gmail.com

Overview
This technical report describes a circuit for inverting dual-rail 2LAL signals, thus making dual-rail 2LAL a

universal logic family.

The dual-rail version of 2LAL cannot invert a signal with just the circuit design techniques disclosed in the

literature. Therefore, 2LAL advocates create the effect of inversion by creating a copy of a dual-rail circuit

with all the signals inverted, effectively creating a quad-rail system. Swapping a signal with its inverse in

the copy creates the effect of inversion, but with the disadvantage of doubling the size of the circuit.

The design technique in the literature uses signals in tick i (e. g. diT, diC), to compute data in the next tick

(e. g. di+1T, di+1C). With the previous discussion as background, the circuit in this technical report uses

signals in both tick i (diT, diC) and tick i+2 (di+2T, di+2C) to compute the inverse during tick i+1 (-di+1T, -

di+1C). This apparently new circuit design method mixes data in different phases.

The inverter presented here has some other interesting properties, for example some outputs “auto

decompute.”

Background
Athas published the

earliest paper with a

2LAL buffer stage [1],

although without

giving the circuit a

name. The author finds

no evidence that Athas

had identified gates.

Frank claims to have

named and invented

2LAL [2-3], including

AND and OR gates.

For inversion, Frank

“upgraded” the circuit

to quad rail and used

signal swapping.

Fig. 1a illustrates

2LAL clocking,

comprising four power-

clocks φ0-φ3 that are

essentially ramped

waves in quadrature

with a range from GND

to Vp.

The 2LAL power-

clocks look like sine

waves in quadrature,

leading one to wonder

(a) Ramped

GND

0 1 2 3
Tick #t
0 1 2 3

(b) Sinusoidal

Fig. 1. (a) Ramped power-clocks, (b) sinusoidal power-clocks. (c)

Buffer stage.

Tick #t
0 1 2 3

Vp

φ0

φ1

φ2

φ3

diT

dkT

φi φj

djT

φj φk (c) Buffer stage

 2

if the sine waves shown in Fig. 1b would work. The author analyzed sine wave power-clocks and found

that they work about as well. However, the sine function in mathematics has a universal starting point of

sin(0) = 0, but if φj = sin(t + jπ/2) (with voltage scaling) the clock will have a 45˚ phase difference from

Frank’s 2LAL power-clocks (Fig. 1b). This document applies to both the power-clocks in Fig. 1a and b.

2LAL data signals are denoted diT and diC, T for True and C for Complement, where diC = Vp - diT

(assuming GND = 0 V). Waveform diT has the geometric shape of φi if it is a logical 1 and GND if logical

zero. Note that diT is a return to zero (RZ) signal, so a sequence of ones looks like square wave. Thus, d iC

is a “return to Vp” signal. Swapping the true and complement rails does not invert the signal, but instead

breaks the electrical protocol.

Fig. 1c shows two basic 2LAL buffer stages, where j = i+1 and k = i+2. In Frank’s notation, the rectangles

are back-to-back MOSFETs that form a transmission gate. The transistor sources and drains are on the

short ends and the gates are on the long ends. A wire attaching to a long side of the rectangle attaches to the

nFET, so the signal on the wire logically enables the nFET gate. An inversion bubble on a control signal

swaps the connections to the pFET and nFET gates.

Frank’s 2LAL is implicitly dual rail, so he duplicates each diagram, replacing each φi with φi+2 and

swapping the T and C suffixes on data signals.

The description above is terse and does not include logic gates; the reader can see refs. [2] [3] for more

information.

Dual-rail inverter
Fig. 2a shows a “half inverter” called INV, with power-clocks φi, φj, and φk, where j = i+1 and k = i+2. The

circuit’s input is diT on the left and its output is the inverse -di+1T = -djT on the right with one tick delay.

The INV circuit does not destroy the input signal, but instead transmits that signal as dkT on the right with a

two-tick delay.

The graphics in Fig. 2a collectively define the INV circuit, but the blue graphics are identical to the buffer

in Fig. 1c. The green graphics are a clamp that may be optional in some cases.

Fig. 2b illustrates the INV circuit symbol. The circuit in Fig. 2a has the layout geometry of the bottom 2/3rd

of Fig. 2b, namely it receives a signal from the left and transmits it to the right (a) inverted and delayed by

one tick and (b) delayed by two ticks. As typical for reversible logic notation, vertically mirroring a circuit

causes it to decompute (although the reader should note that the INV circuit is symmetric around the

centerline). So, mirroring the bottom 2/3rd of Fig. 2b produces the top 2/3rd of Fig. 2b – and the buffer

stages merge. Note that the outputs of the two inverter symbols are shorted together.

What about “decomputing” the values on inverter signals if unused? The answer is “ignore decomputing”

because the outputs of the inverters “auto decompute.” Of course, after passing inverter output through a

2LAL buffer, the data needs to be decomputed (due to the rules for 2LAL buffers).

So, INV converts dual rail to quad rail with eight or twelve transistors (depending on the presence or

absence of the clamp). Vertically mirroring INV converts quad rail back to dual rail – of course noting that

the mirroring has no effect.

Fig. 2c is closer to a traditional inverter, or through an extension a CNOT or Toffoli gate. Basically, Fig. 2c

comprises to INV circuits pointed at each other – with one flipped up side down. The standard

interpretation of the symbols applies: The circuit turns the input signal into quad rail and then decomputes

the original signal, leaving the inverse.

 3

Fig. 3 is a more sophisticated inverter, one that adds three ticks of delay instead of two. So, what is the

advantage? If the central block connects the wires straight through, the circuit is an inverter, but if the

central block swaps the wires a shown by the diagonal dotted lines, the circuit is a non-inverting buffer. As

drawn, Fig. 3 is a CNOT with a manual control.

We can replace the central block with transmission gates that either connect the inputs straight through or

swap them based on a voltage input. This would make Fig. 3 a CNOT controlled by a voltage. We leave the

reader to figure out how to generate the control voltage from a 2LAL signal.

diT

dkT

φj φk

diT dkT

-djT

-djT

djT
buffer buffer

(a) Half inverter (INV) (b) INV circuit symbol

Fig. 2. 2LAL inverter. (a) Circuit diagram comprising two standard 2LAL buffer stages (blue)

plus basic inversion circuitry below (red) and an optional clamp (green). Symbol -djT is the

inverted output, but note that it occurs earlier (tick j) than the rightmost output in the diagram

(tick k). (b) Two copies of the reversible gate diagram, including backwards inverters that recover

energy. Note that the circuit does not change when reversed. Note also that the inverted output

does not require energy recovery unless connected to something (i.e. you can ignore energy

recovery). (c) A traditional inverter, which computes the inverse and then decomputes the

original signal. Clock phases are (in sequential order) i, j, k, and l; diT and diC denote true and

complement signals in phase i; the diagram is for one of two rails.

-djT

-djT

diT buffer buffer

-dlT
-dkT

buffer buffer

dkT djT

(c) Traditional inverter

φi φj

djT

(or Vp)
-φj = φl

 4

Conclusions and Future Work
The author has not discussed this document with anybody else so far.

As far as the author knows, Athas invented the (unnamed) shift register [1], Frank coined the name 2LAL

and expanded it to a quad-rail universal logic family [2], and this document demonstrates that 2LAL can be

a two-rail logic family as well.

The inverters will help most for data storage. Without inverters, a system requiring universal logic and a lot

of data storage would need to store the data in the quad-rail representation. With inverters, data could be:

(a) computed in quad-rail representation

(b) converted to dual-rail representation for storage, which cuts the component count in half

(c) converted back to quad-rail representation when needed for logic.

As far as the author knows, the circuit obeys 2LAL design rules, but is not within the “template” for gate

design in the literature [2]. As such, it represents a new design method. If review of this document reveals

interest in the method, the author might write it up in a later version of this document. The method has a lot

of other uses.

References
[1] Athas, William C. "Energy-recovery CMOS." Low Power Design Methodologies. Boston, MA:

Springer US, 1996.

[2] Frank, Michael P. "Adiabatic Circuits: A Tutorial Introduction."

https://www.osti.gov/servlets/purl/1459779.

[3] Anantharam, Venkiteswaran, et al. "Driving Fully-Adiabatic Logic Circuits Using Custom High-Q

MEMS Resonators." ESA/VLSI. 2004.

https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=7c8d654ce333d5b032af809c4c7770a61

fb3add9

-djT

diT buffer buffer

(a) Alternative inverter, extendible to CNOT or Toffoli

Fig. 3. Alternative inverter. (a) Two mirrored copies of the circuit in Fig. 2 with the inverted

signal buffered. If the central rectangle can swap the output (suffix o) and input (suffix i) signals

controllably, the circuit would be a CNOT or Toffoli based on the control.

-dmT buffer buffer
-dlT

dlT djT
buffer

buffer
-dkTo

dkTo

-dkTi

dkTi

https://www.osti.gov/servlets/purl/1459779
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=7c8d654ce333d5b032af809c4c7770a61fb3add9
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=7c8d654ce333d5b032af809c4c7770a61fb3add9

 5

Appendix: Ngspice code
The following ngspice code defines the circuits in this document precisely. The code is incomplete in the

sense of lacking clock generation and plotting.

.SUBCKT PASS D GT GC S nsub psub $ Pass gate. Args: Drain GateT/C Source nsub psub

xM10 D GT S nsub nFET n=1 m=1 $ pass gate

xM11 D GC S psub pFET n=1 m=1

.ENDS PASS

.SUBCKT PHAS2 iiT iiC ooT ooC L0 L1 L2 L3 nsub psub $ One phase of the 2LAL shift register. Args: iiT/C ooT/C

* clocks/power supplies

X1 iiT ooT ooC L0 nsub psub PASS

X2 iiC ooT ooC L2 nsub psub PASS

X3 ooT iiT iiC L1 nsub psub PASS

X4 ooC iiT iiC L3 nsub psub PASS

C1 iiT nsub 1e-13 $ load capacitors on inputs, to simulate wiring

C2 iiC nsub 1e-13

.ENDS PHAS2

.SUBCKT DELA2 d0T d0C d4T d4C $ Four phases that just delay. Args: 2*{ data<n>T/C }

+ L0 L1 L2 L3 nsub psub $ clocks/power supplies

+ ini=0

.ic V(d0T)={gg} V(d1T) = {gg} V(d2T) = { ini} V(d3T) = { ini}

.ic V(d0C)={vv} V(d1C) = {vv} V(d2C) = {vv-ini} V(d3C) = {vv-ini}

X1 d0T d0C d1T d1C L0 L1 L2 L3 nsub psub PHAS2

X2 d1T d1C d2T d2C L1 L2 L3 L0 nsub psub PHAS2

X3 d2T d2C d3T d3C L2 L3 L0 L1 nsub psub PHAS2

X4 d3T d3C d4T d4C L3 L0 L1 L2 nsub psub PHAS2

.ENDS DELA2

.SUBCKT INV diT diC djT djC ijT ijC dkT dkC x1 x2 x3 x4 Li Lj Lk Ll nsub psub

X0 diT diC djT djC Li Lj Lk Ll nsub psub PHAS2

X1 djT djC dkT dkC Lj Lk Ll Li nsub psub PHAS2

X2 Ll diC diT nt nsub psub PASS $ create the inverted signal ^ pulse from this clock

X3 nt dkC dkT ijC nsub psub PASS

X4 psub djT djC ijC nsub psub PASS $ hold to positive voltage

X6 Lj diC diT ny nsub psub PASS $ create the inverted signal v pulse from this clock

X7 ny dkC dkT ijT nsub psub PASS

X8 nsub djT diC ijT nsub psub PASS $ hold to negative voltage

C1 nt nsub 1e-13 $ load capacitors on inputs, to simulate wiring

C2 ny nsub 1e-13

.ends

* the following circuit is essentially a three-stage inverter with a buffer to round it up to a full cycle

.SUBCKT INVERT d0T d0C i1T i1C i2T i2C i3T i3C i4T i4C $ Four phases that just delay. Args: 5*{ data<n>T/C }

+ x1 x2 x3 x4 $ inverted output

+ L0 L1 L2 L3 nsub psub $ clocks/power supplies

+ ini=0

.ic V(d0T)={gg} V(d1T) = {gg} V(d2T) = { ini}

.ic V(d0C)={vv} V(d1C) = {vv} V(d2C) = {vv-ini}

.ic V(i1T) = {vv} V(i2T) = {vv-ini} V(i3T) = {vv-ini}

.ic V(i1C) = {gg} V(i2C) = {ini} V(i3C) = {ini}

X1 d0T d0C d1T d1C i1T i1C d2T d2C x5 x6 x7 x8 L0 L1 L2 L3 nsub psub INV

X2 i1T i1C i2T i2C d2T d2C i3T i3C ww xx yy zz L1 L2 L3 L0 nsub psub INV

* 0000000 111111111111111 222222222222222 3333333 4444444 ttttttttttt LLLLLLLLLLL nsub psub

X3 i3T i3C i4T i4C L3 L0 L1 L2 nsub psub PHAS2

.ends INVERT

* the following circuit is a two-stage inverter followed by uncomputing so it inverts

* inversion is the normal mode, so the input is d0T d0C and output is i4T i4C

* it can be manually swapped to be a buffer -- like a CNOT with a manual control

.SUBCKT CNOT d0T d0C i1T i1C i2To i2Co i3T i3C i4T i4C $ Four phases that just delay. Args: 5*{ data<n>T/C }

+ x1 x2 x3 x4 $ inverted output

+ L0 L1 L2 L3 nsub psub $ clocks/power supplies

+ ini=0

.ic V(d0T)={gg} V(d1T) = {gg} V(d2Ti) = { ini} V(d3T) = { ini}

.ic V(d0C)={vv} V(d1C) = {vv} V(d2Ci) = {vv-ini} V(d3C) = {vv-ini}

.ic V(i1T) = {vv} V(i2Ti) = {vv-ini} V(i3T) = {vv-ini}

.ic V(i1C) = {gg} V(i2Ci) = {ini} V(i3C) = {ini}

X1 d0T d0C d1T d1C i1T i1C d2To d2Co x5 x6 x7 x8 L0 L1 L2 L3 nsub psub INV

X2 i1T i1C i2To i2Co L1 L2 L3 L0 nsub psub PHAS2

* 0000000 111111111111111 222222222 3333333 444444444444444 ttttttttttt LLLLLLLLLLL nsub psub

x3 d2Ti d2Ci d3T d3C L2 L3 L0 L1 nsub psub PHAS2

X4 i2Ti i2Ci i3T i3C d4T d4C i4T i4C ww xx yy zz L2 L3 L0 L1 nsub psub INV

.if (1) $ manual CNOT control

r0 d2Ti d2To 0 $ inverter

r1 d2Ci d2Co 0

r2 i2Ti i2To 0

r3 i2Ci i2Co 0

.else

r0 d2Ti i2To 0 $ non inverting buffer

r1 d2Ci i2Co 0

r2 i2Ti d2To 0

r3 i2Ci d2Co 0

.endif

.ends CNOT

