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Overview 
This technical report describes a circuit for inverting dual-rail 2LAL signals, thus making dual-rail 2LAL a 

universal logic family. 

The dual-rail version of 2LAL cannot invert a signal with just the circuit design techniques disclosed in the 

literature. Therefore, 2LAL advocates create the effect of inversion by creating a copy of a dual-rail circuit 

with all the signals inverted, effectively creating a quad-rail system. Swapping a signal with its inverse in 

the copy creates the effect of inversion, but with the disadvantages of doubling the size of the circuit. 

The design technique in the literature uses signals in tick i (e. g. diT, diC), to compute data in the next tick 

(e. g. di+1T, di+1C). With the previous discussion as background, the circuit in this technical report uses 

signals in both tick i (diT, diC) and tick i+2 (di+2T, di+2C) to compute the inverse during tick i+1 (-di+1T, -

di+1C). This apparently new circuit design method mixes data in different phases. 

The inverter presented here has some other interesting properties, for example some outputs “auto 

decompute.” 

Background 
Athas published the earliest paper with a 2LAL buffer stage [1], although without giving the circuit a name. 

The author finds no evidence that Athas had identified gates. Frank claims to have reinvented and named 

2LAL [2] [3], including AND and OR gates. For inversion, Frank “upgraded” the circuit to quad rail and 

used signal swapping. 

In an iMessage, Frank says he “realized when working on S2LAL in 2020 that in fact 2LAL was almost 

exactly equivalent to the original CRL logic of Younis & Knight 1993.” 

Fig. 1a illustrates the 2LAL clocking, comprising four clocks φ0-φ3 that are essentially ramped waves in 

quadrature with a range from GND to Vp. 

The 2LAL power-clocks look like sine waves in quadrature, leading one to wonder if the sine waves as 

shown in Fig. 1b would work. The author analyzed sine wave power-clocks and found that they work about 

as well. However, the sine function in mathematics has a universal starting point of sin(0) = 0, but φi ≠ sin(t 

+ iπ/2) (with voltage scaling) the clock will have a 45˚ phase difference from Frank’s 2LAL power-clocks 

(Fig. 1b). This document applies to both the power-clocks in Fig. 1a and b. 

2LAL data signals are denoted diT and diC, T for True and C for Complement, where diC = Vp - diT 

(assuming GND = 0 V). Waveform diT has the geometric shape of φi if it is a logical 1 and GND if logical 

zero. Note that diT is a return to zero (RZ) signal, so a sequence of ones looks like square wave. Thus, d iC 

is a “return to Vp” signal. Swapping the true and complement rails does not invert the signal, but instead 

breaks the electrical protocol. 

Fig. 1c shows two basic 2LAL buffer stages, where j = i+1 and k = i+2. In Frank’s notation, the rectangles 

are back-to-back MOSFETs that form a transmission gate. The transistor sources and drains are on the 

short ends and the gates are on the long ends. A wire attaching to a long side of the rectangle attaches to the 

nFET, so the signal on the wire logically enables the nFET gate. An inversion bubble on a control signal 

swaps the connections to the pFET and nFET gates. 

Frank’s 2LAL is implicitly dual rail, so he duplicates each diagram, replacing each φi with φi+2 and 

swapping the T and C suffixes on data signals. 
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The description above is terse and does not include logic gates; the reader can see ref. [2] [3] for more 

information. 

Dual-rail inverter 
The objective is to produce both the logical and electrical inverse of the signal stream on djT, which will be 

-djC. We will worry about -djT later. Each one-bit on signal djT has the same waveform as clock φj, and 

comprises DC GND otherwise. By symmetry djC and -djC have the same waveform as clock φl, but emit a 

DC value in different places. The strategy is to manufacture  -djC starting with a continuous stream of one-

bits – which is just power-clock φl – and block the bits that should be DC (but the DC value will be Vp not 

GND). Just like the 2LAL circuitry in Fig. 1b, we may be able to leave the output floating for the DC part 

(we will have to see). 

Fig. 2a shows a “half inverter” called INV with power-clocks φi, φj, φk,, and φl, where j = i+1,k = i+2, and l 

= i+3.  The circuit’s input is diT on the left and its output is the inverse -di+1C = -djC with one tick delay on 

the right with one tick delay. The INV circuit does not destroy the input signal, but instead transmits that 

signal as dkT with a two tick delay. 

The graphics in Fig. 2a collectively define the INV circuit, but the blue graphics are identical to the buffer 

in Fig. 1c. The green graphics are an optional clamp (which will be needed for output signals that draw 

static current) 

The reader will see φl, driving a sequence of three transmission gates enabled respectively by (taking the 

inversion bubbles into account) diC, djC, and dkC, Simplistically, djC will block φl, on a one-bit, as desired. 

While inspiring, just using djC would lead to half-on transmission gates transmitting weak signals at the 

onset of φl, and again after the bit. So, we need to “widen” the block time on both sides. This can be 

accomplished by additionally gating φl, with diC and dkC (in the sense of an AND, where any of the inputs 

can block the signal). 

The reader will see φl, 
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At this point, we have constructed -djC; just flip φl, to φj,to construct -djT. 

Up to this point, we have been relying on the fact that driving an output to GND or Vp and then just leaving 

it there will hold the DC value. If there is a static current load, the claim shown in green will hold it in 

position. 

Fig. 2b illustrates the INV circuit symbol. The circuit in Fig. 2a has the layout geometry of the bottom 2/3rd 

of Fig. 2b, namely it receives a signal from the left and transmits it to the right (a) inverted and delayed by 

one tick and (b) delayed by two ticks. As typical for reversible logic symbols, vertically mirroring a circuit 

causes it to decompute (although the reader should note that the INV circuit is symmetric around the 

diT 

dkT 

φj φk 

diT dkT 

-djT 

 

-djT 

djT 
buffer buffer 

(a) Half inverter (INV) (b) INV circuit symbol 

φi φj 

djT 

(      or Vp) 
-φj = φl 

Fig. 2. 2LAL inverter. (a) Circuit diagram comprising two standard 2LAL buffer stages (blue) 

plus basic inversion circuitry above (red) and an optional clamp (green). Label -djT is the inverted 

output, but note that it occurs earlier (tick j) than the rightmost output in the diagram (tick k).  (b) 

Two copies of the reversible gate diagram, including backwards inverters that recover energy. 

Note that the circuit does not change when reversed. Note also that the inverted output does not 

require energy recovery unless connected to something (i.e. it can be ignored). (c) A traditional 

inverter, which computes the inverse and then decomputes the original signal. Clock phases are 

(in sequential order) i, j, k, and l; diT and diC denote true and complement signals in phase i; 

diagram is for one of two rails. 

-djC 

-djT 

diT buffer buffer 

-dlT 
-dkT 
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dkT djT 

(c) Traditional inverter 
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centerline). So, mirroring the bottom 2/3rd of Fig. 2b produces the top 2/3rd of Fig. 2b – and the buffer 

stages merge. Note that the outputs of the two inverter symbols are shorted together. 

What about “decomputing” the values on inverter signals if unused? The answer is “ignore decomputing” 

because the outputs to the inverters “auto decompute.” Of course, after passing inverter output through a 

2LAL buffer, the data needs to be decomputed (due to the rules for standard buffers). 

So, INV converts dual rail to quad rail with twelve or sixteen transistors (depending on the presence or 

absence of a clamp). Mirroring INV converts quad rail back to dual rail – of course noting that the 

mirroring the INV circuit has no effect. 

Fig. 2c is closer to a traditional inverter, or through an extension, a CNOT or Toffoli gate. Basically, Fig. 

2c comprises to INV circuits pointed at each other – with one flipped up side down. The standard 

interpretation of the symbols applies: The circuit turns the input signal into quad rail and then decomputes 

the original signal, leaving the inverse. 

Fig. 3 is a more sophisticated inverter, one that adds three ticks of delay instead of two. So, what is the 

advantage? If the central block connects the wires straight through, the circuit is an inverter, but if the 

central block swaps the wires a shown by the diagonal dotted lines, the circuit is a non-inverting buffer. As 

drawn, Fig. 3 is a CNOT with a manual control. 

 

We can replace the central block with transmission gates that either connect the inputs straight through or 

swap them based on a voltage input. This would make Fig. 3 a CNOT controlled by a voltage. We leave the 

reader to figure out how to generate the control voltage from a 2LAL signal. 

Conclusions and Future Work 
As far as the author knows, Athas invented the (unnamed) shift register [1], Frank coined the name 2LAL 

and expanded it to a quad-rail universal logic family [2], and this document demonstrates that 2LAL can be 

a two-rail logic family as well. 

The inverters will help most for data storage. Without inverters, a system requiring universal logic and a lot 

of data storage would need to store the data in the quad-rail representation. With inverters, data could be: 

(a) computed in quad-rail representation 

(b) converted to dual-rail representation for storage, which cuts the component count in half 

(c) converted back to quad-rail representation when needed for logic. 

As far as the author knows, the circuit obeys 2LAL design rules, but is not within the “template” for gate 

design in the literature [2]. As such, it represents a new design method. If review of this document reveals 

interest in the method, the author might write it up in a later version of this document. The method has a lot 

of other uses. 
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(a) Alternative inverter, extendible to CNOT or Toffoli 

Fig. 3. Alternative inverter. (a) Two mirrored copies of the circuit in Fig. 2 with the inverted 

signal buffered. If the central rectangle can swap the output (suffix o) and input (suffix i) signals  

controllably, the circuit would be a CNOT or Toffoli based on the control. 
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There is a loose end for future work. The three transmission gates in Fig. 2a do not work as well as desired. 

The transmission gate turn on completely and off completely. However, two transmission gates in series 

have an intermediate node that can contain change. The illustrated circuit has three transmission gates in 

series, which has to intermediate nodes. If the circuit blocks a large number of bits in sequence, this small 

amount of charge will move non-adiabatically between the terminal, eventually eroding signal integrity. 

Some people might see this as a bug in the circuit inverter circuit. On the other hand, the standard 2LAL 

buffer stage (Fig. 1c) has the same problem with a long sequence of zero-bits. So, this undesirable anomaly 

does not seem any worse than anomalies more even more deeply baked in the circuit family. 

However, the author has two mitigations: 

The three transmission gates can be three nFETs in series and three pFETs in series, with no bridges 

between the intermediate points. This helps. 

There are multiple independent gate transistors (MIGFETS) that provide AND functionality in two gates 

without the intermediate charge storage location. These devices had been hypothetical, but the can not be 

manufactured with some FINFET processes. Currently manufacturable devices do not have a high enough 

on-off ratio to be helpful so far. 

References 
[1] Athas, William C. "Energy-recovery CMOS." Low Power Design Methodologies. Boston, MA: 

Springer US, 1996. 

[2] Frank, Michael P. "Adiabatic Circuits: A Tutorial Introduction." 

https://www.osti.gov/servlets/purl/1459779. 

[3] Anantharam, Venkiteswaran, et al. "Driving Fully-Adiabatic Logic Circuits Using Custom High-Q 

MEMS Resonators." ESA/VLSI. 2004. 

https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=7c8d654ce333d5b032af809c4c7770a61

fb3add9 

Appendix: Ngspice code 
The following ngspice code defines the circuits in this document precisely. The code is incomplete in the 

sense of lacking clock generation and plotting. 

.param cwire=1e-13 cand=.5e-13 

 

.SUBCKT PASS D GT GC S nsub psub                            $ Pass gate. Args: Drain GateT/C Source nsub psub 

xM10 D GT S nsub nFET n=1 m=1                               $ pass gate 

xM11 D GC S psub pFET n=1 m=1 

.ENDS PASS 

 

.SUBCKT PASS2 D GT GC HT HC S I J nsub psub                 $ Double pass gate. Args: Drain GateT/C Source nsub psub 

xM10 D GT I nsub nFET n=1 m=1                               $ pass gate 

xM20 I HT S nsub nFET n=1 m=1                               $ pass gate 

xM11 D GC J psub pFET n=1 m=1 

xM21 J HC S psub pFET n=1 m=1 

C1 I nsub 'cand'                                            $ load capacitors on inputs, to simulate wiring 

C2 J nsub 'cand'                                            $ load capacitors on inputs, to simulate wiring 

R1 I J 5e7                                                  $ can either have the transistor chains shorted or 5e7 

resistor                           

.ENDS PASS2 

 

.SUBCKT PASS3 D GT GC HT HC IT IC S I J K L nsub psub       $ Triple pass gate. Args: Drain GateT/C Source nsub psub 

xM10 D GT I nsub nFET n=1 m=1                               $ pass gate 

xM20 I HT J nsub nFET n=1 m=1                               $ pass gate 

xM30 J IT S nsub nFET n=1 m=1                               $ pass gate 

xM11 D GC K psub pFET n=1 m=1 

xM21 K HC L psub pFET n=1 m=1 

xM31 L IC S psub pFET n=1 m=1 

C1 I nsub 'cand/2'                                          $ load capacitors on inputs, to simulate wiring 

C2 J nsub 'cand/2'                                          $ load capacitors on inputs, to simulate wiring 

C3 K nsub 'cand/2'                                          $ load capacitors on inputs, to simulate wiring 

C4 L nsub 'cand/2'                                          $ load capacitors on inputs, to simulate wiring 

R1 I J 5e7                                                  $ can have the transistor chains shorted or 5e7 resistor                           

R2 K L 5e7                                                  $ can have the transistor chains shorted or 5e7 resistor                           

.ENDS PASS3 

 

.SUBCKT PHAS2 iiT iiC ooT ooC L0 L1 L2 L3 nsub psub         $ One phase of the 2LAL shift register. Args: iiT/C ooT/C 

* clocks/power supplies 

X1 iiT ooT ooC L0 nsub psub PASS 

X2 iiC ooT ooC L2 nsub psub PASS 

X3 ooT iiT iiC L1 nsub psub PASS 

https://www.osti.gov/servlets/purl/1459779
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=7c8d654ce333d5b032af809c4c7770a61fb3add9
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=7c8d654ce333d5b032af809c4c7770a61fb3add9
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X4 ooC iiT iiC L3 nsub psub PASS 

C1 iiT nsub 1e-13                                           $ load capacitors on inputs, to simulate wiring 

C2 iiC nsub 1e-13 

.ENDS PHAS2 

 

.SUBCKT DELA2 d0T d0C d4T d4C                               $ Four phases that just delay. Args: 2*{ data<n>T/C } 

+ L0 L1 L2 L3 nsub psub                                     $ clocks/power supplies 

+ ini=0 

.ic V(d0T)={gg} V(d1T) = {gg} V(d2T) = {   ini} V(d3T) = {   ini} 

.ic V(d0C)={vv} V(d1C) = {vv} V(d2C) = {vv-ini} V(d3C) = {vv-ini} 

X1 d0T d0C d1T d1C L0 L1 L2 L3 nsub psub PHAS2 

X2 d1T d1C d2T d2C L1 L2 L3 L0 nsub psub PHAS2 

X3 d2T d2C d3T d3C L2 L3 L0 L1 nsub psub PHAS2 

X4 d3T d3C d4T d4C L3 L0 L1 L2 nsub psub PHAS2 

.ENDS DELA2 

 

.SUBCKT INV diT diC djT djC ijT ijC dkT dkC x1 x2 x3 x4 Li Lj Lk Ll nsub psub 

X0 diT diC djT djC Li Lj Lk Ll nsub psub PHAS2 

X1 djT djC dkT dkC Lj Lk Ll Li nsub psub PHAS2 

X2 Ll diC diT dkC dkT ijC nt1 nt2 nsub psub PASS2          $ create the inverted signal ^ pulse from this clock 

X6 Lj diC diT dkC dkT ijT ny1 ny2 nsub psub PASS2          $ create the inverted signal v pulse from this clock 

 

r101 x1 djT 1e6                                            $ connections needed for plots  

r102 x2 djC 1e6 

r103 x3 ijT 1e6 

r104 x4 ijC 1e6 

.ends INV 

 

.SUBCKT INV3 diT diC djT djC ijT ijC dkT dkC x1 x2 x3 x4 Li Lj Lk Ll nsub psub 

X0 diT diC djT djC Li Lj Lk Ll nsub psub PHAS2 

X1 djT djC dkT dkC Lj Lk Ll Li nsub psub PHAS2 

X2 Ll diC diT djC djT dkC dkT ijC nt1 nt2 xx xy nsub psub PASS3 $ create the inverted signal ^ pulse from this clock 

X6 Lj diC diT djC djT dkC dkT ijT ny1 ny2 wx wy nsub psub PASS3 $ create the inverted signal v pulse from this clock 

 

r101 x1 djT 1e6                                            $ connections needed for plots  

r102 x2 djC 1e6 

r103 x3 ijT 1e6 

r104 x4 ijC 1e6 

.ends INV3 

 

* the following circuit is essentially a three-stage inverter with a buffer to round it up to a full cycle 

.SUBCKT INVERT d0T d0C i1T i1C i2T i2C i3T i3C i4T i4C      $ Four phases that just delay. Args: 5*{ data<n>T/C } 

+ x1 x2 x3 x4                                               $ inverted output 

+ L0 L1 L2 L3 nsub psub                                     $ clocks/power supplies 

+ ini=0 

.ic V(d0T)={gg} V(d1T) = {gg} V(d2T) = { ini} 

.ic V(d0C)={vv} V(d1C) = {vv} V(d2C) = {vv-ini} 

.ic             V(i1T) = {vv} V(i2T) = {vv-ini} V(i3T) = {vv-ini} 

.ic             V(i1C) = {gg} V(i2C) = {ini}    V(i3C) = {ini} 

X1 d0T d0C d1T d1C i1T i1C         d2T d2C                 x5 x6 x7 x8 L0 L1 L2 L3 nsub psub INV3 

X2                 i1T i1C i2T i2C d2T d2C i3T i3C         ww xx yy zz L1 L2 L3 L0 nsub psub INV3 

*  0000000 111111111111111 222222222222222 3333333 4444444 ttttttttttt LLLLLLLLLLL nsub psub 

X3                                         i3T i3C i4T i4C             L3 L0 L1 L2 nsub psub PHAS2 

 

.if (1)                                                     $ connections needed for plots 

r101 x1 d0T 1e6 

r102 x2 d0C 1e6 

r103 x3 i4T 1e6 

r104 x4 i4C 1e6 

.endif 

.ends INVERT 

 

* the following circuit is a two-stage inverter followed by uncomputing so it inverts 

* inversion is the normal mode, so the input is d0T d0C and output is i4T i4C 

* it can be manually swapped to be a buffer -- like a CNOT with a manual control 

.SUBCKT CNOT d0T d0C i1T i1C i2To i2Co i3T i3C i4T i4C      $ Four phases that just delay. Args: 5*{ data<n>T/C } 

+ x1 x2 x3 x4                                               $ inverted output 

+ L0 L1 L2 L3 nsub psub                                     $ clocks/power supplies 

+ ini=0 

.ic V(d0T)={gg} V(d1T) = {gg} V(d2Ti) = { ini}   V(d3T) = { ini} 

.ic V(d0C)={vv} V(d1C) = {vv} V(d2Ci) = {vv-ini} V(d3C) = {vv-ini} 

.ic             V(i1T) = {vv} V(i2Ti) = {vv-ini} V(i3T) = {vv-ini} 

.ic             V(i1C) = {gg} V(i2Ci) = {ini}    V(i3C) = {ini} 

X1 d0T d0C d1T d1C i1T i1C d2To d2Co                         x5 x6 x7 x8 L0 L1 L2 L3 nsub psub INV3 

X2                 i1T i1C i2To i2Co                                     L1 L2 L3 L0 nsub psub PHAS2 

*  0000000 111111111111111 222222222 333333333333333 4444444 ttttttttttt LLLLLLLLLLL nsub psub 

x3                         d2Ti d2Ci         d3T d3C                     L2 L3 L0 L1 nsub psub PHAS2 

X4                         i2Ti i2Ci i3T i3C d3T d3C i4T i4C ww xx yy zz L2 L3 L0 L1 nsub psub INV3 

 

.if (1)                                                     $ A CNOT with electrically controlled swap 

r10 rcT nsub 0                                              $ electrical CNOT control rcT gg for non-inverting buffer 

+                                                           $ and vv for CNOT invert 

r11 rcC psub 0 

X100 d2Ti rcT rcC d2To nsub psub PASS                       $ controlled swap network -- invert (straight through) 

X101 d2Ci rcT rcC d2Co nsub psub PASS 

X102 i2Ti rcT rcC i2To nsub psub PASS 

X103 i2Ci rcT rcC i2Co nsub psub PASS 

X104 d2Ti rcC rcT i2To nsub psub PASS                       $ non-invering buffer (swap) 

X105 d2Ci rcC rcT i2Co nsub psub PASS 

X106 i2Ti rcC rcT d2To nsub psub PASS 

X107 i2Ci rcC rcT d2Co nsub psub PASS 

.elseif (1)                                                 $ A CNOT with manual swap set to straight through 

+                                                           $(inverter) 

r0 d2Ti d2To 0                                              $ inverter 

r1 d2Ci d2Co 0 
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r2 i2Ti i2To 0 

r3 i2Ci i2Co 0 

.else                                                       $ A CNOT with manual swap set to interchange (non-inverting 

+                                                           $ buffer) 

r0 d2Ti i2To 0                                              $ non inverting buffer 

r1 d2Ci i2Co 0 

r2 i2Ti d2To 0 

r3 i2Ci d2Co 0 

.endif                                                      $ A 

.if (0)                                                     $ B plot setup #1 

r101 x1 d2To 1e6 

r102 x2 d2Co 1e6 

r103 x3 i2To 1e6 

r104 x4 i2Co 1e6 

.elseif (1)                                                 $ B plot setup #2 

r101 x1 d0T 1e6 

r102 x2 d0C 1e6 

r103 x3 i4T 1e6 

r104 x4 i4C 1e6 

.else                                                       $ B NRZ output, with a plot setup 

 

.if (0)                                                     $ C historical version of NRZ circuit 

X200 w d0T d0C ww nsub psub PASS                            $ pretty good solution for now 

X201 ww i4C i4T L1 nsub psub PASS 

X211 ww i4T i4C psub nsub psub PASS 

 

X202 w i4T i4C wx nsub psub PASS 

X203 wx d0C d0T L3 nsub psub PASS 

 

X205 w d2To d2Co psub nsub psub PASS 

 

r101 x1 d2To 1e6 $ d0T 1e6 

r102 x2 L1 0e6 $ d2To 1e6 

r103 x3 w 1e6 $i3T 1e6 

r104 x4 i4T 1e6 

 

.else                                                       $ C latest NRZ circuit here; ones above can be deleted 

 

X200 w d0T d0C i4C i4T L1 I1 J1 nsub psub PASS2             $ both energies have suffix E-14 before adding cwire 

X201 w i4T i4C d0C d0T L3 I2 J2 nsub psub PASS2 

*C1 w nsub 'cwire'                                           $ load capacitors on wires, to simulate wiring 

 

.if (1)                                                     $ D  baseline; seems to work; can delete the nFET 

*X202 w d2To d2Co psub nsub psub PASS 

xM202 w d2Co psub psub pFET n=1 m=1 

 

.elseif (1)                                                 $ D more intelligent, but does not seem to work as well 

X202 w i4T i4C d0T d0C psub I3 J3 nsub psub PASS2           $ PASS2 module, but nfets unnecessary 

.else 

xM202 w i4C x psub pFET n=1 m=1                             $ D just the pFETs 

xM203 x d0C psub psub pFET n=1 m=1 

C0 x nsub 'cand'                                            $ for compatibility 

.endif                                                      $ D 

 

r1 x1 w 1e6 $ d0T 1e6                                       $ for plotting only 

r2 x2 d2To 1e6 $ d2To 1e6 

r3 x3 d2To 1e6 $i3T 1e6 

r4 x4 d2Co 1e6 

 

 

.endif                                                      $ C 

.endif                                                      $ B 

.ends CNOT 

 


